
1

Automate repetitive tasks and save time

with the right RPA tool

RPA Platforms

White Paper

 By Victor Le



2

Introduction

Fully Automated Processes

User-Driven Processes

Implementation Analysis

Appian RPA Advancements

Conclusion

About the Author

Table of Contents
3 

3

4

5

6

6

7



3

Robotic process automation - or RPA - yields time and cost savings by having 
a robot perform steps quickly, consistently, and accurately. Many industries 
exhibit several pain points that can be alleviated through RPA. For example, in 
healthcare, scarcity of electronic medical record system APIs necessitates a 
lot of manual data entry. Report generation involves gathering data from mul-
tiple systems. Patient and provider lookups require particular search criteria 
and careful matching against multiple results.

Macedon has built automations using UiPath - a leading automation platform 
- to address these areas. Now that Appian has grown in the RPA space, it is 
important to weigh these technology options. Some workflows can be per-
formed without any human input. For others, humans drive some of the pro-
cess, with the structured and predictable portions being automated. Appian 
and UiPath are capable of solving both scenarios to varying degrees. 

Appian is a powerful BPM platform capable of automating certain functional-
ity even without its dedicated RPA feature. With RPA, Appian can automate 
workflow steps in external systems that lack APIs. UiPath has vast automa-
tion capabilities and also facilitates user-driven processes, most prominently 
via applications built in App Studio. 

With both platforms able to achieve similar goals, we will examine which sce-
narios are better suited for each. This paper is based on Appian 22.4 and 
UiPath 22.10.

For completely hands-off automations, UiPath is the platform of choice. There 
is a plethora of out-of-the-box components for common actions, greatly accel-
erating development. This includes both automation of user interactions with-
in applications and background activities like file system operations, Excel 
sheet modification, sending emails, script execution, etc. As will be explored 
later in this paper, UiPath’s UI and image-based automation is quick and 
straightforward to configure compared to Appian’s implementation. Moreover, 
workflows can be built in one editor for a unified developer experience.

It is possible to build a fully automated process in Appian RPA as a stand-
alone robotic process. For example, a robot might log into a system, pick 
up work items from a queue, and complete those items, repeating said ac-
tions throughout the day. Since all the steps are just interactions with various 
controls, the workflow can be designed using available low-code actions in 
the robotic process editor. More complex functionality, not feasible via the 
low-code actions, will require developers to write custom Java methods in a 
separate IDE to then deploy and import into Appian for use. 

Introduction

Fully Automated Processes



4

With more involved automations, developers may need to additionally lever-
age tools from the base Appian platform. The Process Modeler is a workflow 
designer within the base Appian platform that ties together business rules, 
integrations, database operations, and user interfaces. It can even execute 
robotic processes. When used within the Process Modeler, Appian RPA pri-
marily automates steps involving repetitive, predictable, and well-defined 
user interactions. Although the Process Modeler is a versatile tool, the devel-
opment process can involve a lot of context switching. Business rules, inte-
grations, and robotic processes are designed in separate editors within the 
platform. Troubleshooting robotic processes is especially cumbersome since 
the step-by-step execution of a robotic process cannot be viewed from the 
Process Modeler; instead, one would have to go into the RPA Console and 
view the logs for the process of interest. 

Designing full automations involving UI interactions is often a quicker, more 
streamlined, and unified experience in UiPath. Development can take place 
entirely within a single editor. In many cases, Appian RPA will be paired with 
the base Appian platform, which entails designing in at least two editors – 
more if custom Java methods and business rules are involved. 

Some workflows are inherently user-driven, in which case Appian is the plat-
form of choice. Appian is well suited to record-centric processing, and can 
tailor user experiences based on roles and assigning tasks to different groups 
or individuals. Users work with modern, dynamic interfaces that can pull data 
context from disparate systems. The users’ portions of workflows are part of 
larger process models in which other automation steps (data manipulation, 
database operations, integrations, etc.) take place. Here, RPA would most 
often extract data from an external system’s front end and/or complete pre-
dictable workflow steps within said system. For example, a recruiter might 
begin the onboarding process for a new employee. At one of the steps in the 
process, an RPA bot will use info entered by the new hire to set up direct de-
posit in a legacy payroll system. Appian’s high degree of modularity translates 
to greater confidence when building complex applications, and its reporting 
capabilities offer visually appealing business insights.

UiPath App Studio is a cloud development platform that enables developers 
to create user-driven applications that can easily start processes built in the 
main platform. It features standard input and data display options and compo-
nents that can be conditionally hidden or disabled. Styling options allow color, 
font, size, and other aspects to be modified. Most importantly, interacting with 
components can initiate various events. This includes message display, value 
updates, and starting UiPath RPA processes, whose execution results can be 
further used within the app. Persistent storage takes place via saving data to 
a UiPath cloud data store, enabling such functionality as a simple display of 
transaction history.

App Studio has significant shortcomings when compared to Appian. For one, 
the developer experience is much more drag-and-drop oriented. With no 

User-Driven Processes



5

means to view the underlying code for components, it is more cumbersome 
for developers to make precise edits or quickly ascertain what an app does 
from a glance. Although components can start processes, actually viewing 
the process requires opening that project in the separate UiPath Studio editor. 
While there is a persistent storage option, data display is relegated to lists 
and tables. There’s no out-of-the-box integration with an enterprise database 
solution for more valuable reporting via views. Charts and graphs need to be 
generated through Excel in an RPA process and then loaded into the UiPath 
app. A large barrier to building complex apps is that App Studio does not 
emphasize modularity and maintainability. There’s no concept of constants 
or reusable custom components. This increases the effort of building simi-
lar applications and making changes like value or label updates. Lastly, not 
having a concept of tasks or traceable workflows makes it difficult to create 
collaborative systems for business teams. As a result, apps are more suited 
for isolated users. 

As it currently stands, UiPath’s App Studio is only a viable option for simplis-
tic processes and siloed work. A proper BPM solution ties together different 
steps in a larger workflow and helps to provide organizational insights and 
transparency. In this sense, Appian’s user-driven workflows are valuable for 
both the individual and the team.

Implementation Analysis

Below are high-level and in-depth comparisons of how implementing various 
pieces of RPA functionality differs between Appian and UiPath. As is appar-
ent, there are areas where Appian lags behind UiPath for the time being.

Web App Automation
Configuring actions by which a robot will interact with user interfaces.

Appian UiPath

Effort: Low

•	 Recorder tool auto-generates 
actions 

•	 Ad hoc action configuration in-
volves some tedium or manual 
work

Effort: Very Low

•	 Recorder tool auto-generates 
actions

•	 Simple ad hoc action configu-
ration 

•	 UI Explorer tool for fine-tuning

Appian’s recorder tool is the most 
accurate way to configure web 
app actions. It identifies portions 
of the web page’s source code 
corresponding to elements of 
interest. Outside of using the re-
corder, a developer would have to 
use browser dev tools to inspect 
the source code and extract the 
pertinent piece.

UiPath’s recorder tool auto-gener-
ates actions, identifying portions 
of the web page’s source code 
corresponding to elements of 
interest. It’s also simple for devel-
opers to add actions manually. The 
actions enable the dev to highlight 
elements and obtain the source 
code portion ad hoc. A dedicated 
UI Explorer tool similarly allows 
for highlighting elements but also 
extracts much more of the source 
code for fine-tuning.



6

Image-Based Automation
Configuring actions by which a robot will interact with on-screen images.

Workload Distribution
Configuring multiple robots to work over a common queue of tasks to in-
crease throughput.

Appian UiPath

Effort: Medium

•	 Separately launched support 
image tool to create images of 
interest

•	 Image-based action must load 
an image of interest. Any off-
sets are configured manually

Effort: Very Low

•	 Image-based action has innate 
screenshot tool to capture the 
image of interest

•	 Recorder tool can auto-config-
ure an offset from an image

The support image tool must 
be launched through an Appian 
RPA application installed on the 
developer’s machine. Screenshots 
of the entire screen are cropped 
to just the image of interest, with 
the resulting image saved to a 
specific location accessible to the 
robot. Within the process editor, 
this image must be located and 
loaded into the image-based 
action. Configuring offsets from 
the image involves manual entry 
of pixel counts.

Image-based actions enable 
developers to create a screenshot 
of just the image of interest. The 
image is saved to the project and is 
immediately available for use. When 
working with offsets from images, 
the recorder tool removes any 
guesswork and generates accurate 
actions.

Appian UiPath

Effort: High

•	 Write Java methods to specify 
a queue, reserve queue items, 
release queue items, and 
update the queue

Effort: Very Low

•	 Out-of-the-box actions for pick-
ing up queue items and updat-
ing their status

•	 Reusable queue

Developers must write custom 
Java methods that in turn call 
methods from various queue 
interfaces. Queue item process-
ing involves reserving the item 
to ensure concurrent updates to 
that item are not made and then 
releasing the item when done, at 
which point the item’s status is 
updated. For cleanliness, a new 
queue is created and closed per 
batch of items, similarly using 
custom Java methods for a bot 
to reserve the queue and close it 
once there are no more items to 
process.

Low-code actions for interacting 
with queues and queue items sim-
plify development. Innate locking 
mechanisms with queues and out-
of-the-box actions save developers 
the effort of having to ensure the 
same queue item cannot be modi-
fied by multiple process executions. 
The same queue can be reused for 
subsequent runs, as items can be 
filtered on status.



7

Appian RPA Advancements

In the span of about 2 years since its RPA rollout, Appian has made signifi-
cant strides in key areas to increase the appeal of this platform offering.
Below we examine some of these advancements.

RPA Capability

Base Appian Platform Synergy

Developer Experience

Conclusion

Selecting UiPath or Appian as the RPA platform of choice would depend on 
the types of automations an organization can or plans to build. If the workflows 
to be automated have no user involvement, UiPath is an excellent choice. 
Easily configured UI and image-based automation actions, combined with a 
seamless developer experience, help to provide rapid delivery. 

•	 Image recognition

•	 Credential support

The ability to have a robot perform actions on an image added 
much-needed versatility to automations, while credential support 
improved security and maintainability. File system operations and for-
each loops expanded what was possible to configure with just low-code 
actions.

•	 File system operations

•	 Looping workflows

•	 Parameter support

•	 Process invocation

Robotic processes were enhanced to accept and return parameters to 
the calling process, enabling them to be more dynamic. An option was 
also added to execute a Process Model from within a robotic process 
instead of exclusively the reverse – useful for when a small portion 
of the workflow needs to take place within the base platform before 
proceeding with the remainder of a transaction. Support for reusable 
business logic meant developers could independently develop and test 
complex rules before plugging them into the process.

•	 Low-code actions

•	 Editor redesign

Upon initial release, Appian RPA development entailed Java coding in 
an IDE. Methods written in this way were then imported into Appian. 
Low-code actions for common robot actions made development more 
streamlined and accessible. The major redesign of the editor made it 
easier to ascertain what a process does at a glance. 
Making RPA workflows execute synchronously within the Process Mod-
eler meant developers no longer had to build in polling mechanisms to 
advance the process. Lastly, the current iteration of the task recording 
tool automatically imports generated actions into the workflow, whereas 
previously a recording file had to be created and manually imported. 

•	 Reusable components 
support

•	 Synchronous process execution

•	 Streamlined recording tool



8

Since the prerequisite for Appian RPA is the base Appian platform, an orga-
nization considering RPA, in general, might contemplate opportunities for a 
BPM solution to tie together and optimize its processes. If such opportunities 
exist or may come along in the near future, Appian is the better investment. 
For the portions requiring user interaction, Appian will offer more options to 
build rich and well-contextualized interfaces. Apart from this, the platform’s re-
cord-centric applications help drive its powerful reporting capabilities. Support 
for modularity is also a major point in Appian’s favor. Reusable components 
help accelerate development of similar features and applications, on top of 
aiding in testing and debugging. This practice must be introduced to UiPath 
Apps to facilitate building complex applications. Although more effort is re-
quired to implement some functionality in Appian RPA compared to UiPath, 
given the platform’s track record in just the last few years, it’s safe to say Ap-
pian will continue to build upon its brand of RPA to make it more appealing to 
businesses and developers. 

Victor Le is a Principal Consultant with Macedon. He initially focused on Ap-
pian development, building several financial applications in areas such as 
consumer lending, KYC, and PPP. Later he specialized in UiPath, delivering 
and supporting many healthcare automations utilized in telemedicine, patient 
admissions, and staffing services.

About the Author

About Macedon

Macedon is a recognized leader in intelligent automation and cloud data solutions. 
We have deep expertise with industry-leading technologies that we leverage to 
solve our clients’ unique challenges. Our hybrid roles achieve better solutions faster 
than traditional development teams.

Contact: (571) 526-4281
info@macedontechnologies.com


