
1

Increasing productivity for the devel-
opment team

Modern DevOps for Low-
Code

White Paper

 By Derek Shue

Table of Contents
Low-Code and DevOps

The DevOps Stack

Continuous Integration

Continuous Integration in Action

Solving CI for Low-Code

Appian Versioning Tool

Automated Testing

Continuous Delivery / Deployment

Appian Automated Deployments

Monitoring

Conclusion

3

3

4

4

5

6

6

6

7

7

8

3

A great developer will deliver their code quickly, to specification, and do so
consistently. They will maintain their team’s best practices, test often and
sometimes offer a novel solution. Developers must also perform their duties
while keeping in mind the full stack of dependent technologies. Front-end,
back-end, and middle integration layers form a web of interconnections that
become difficult to decipher as the complexity of the solution increases over
time.

The answer to the increasing difficulty of this scenario is the low-code plat-
form. According to Malcom Ross, the Vice President of Product at Appian, the
low-code platform is the way to “turn your business’s intentions into an appli-
cation very quickly.”[1] A low-code platform should inherently deliver security,
scalability, and collaboration. Therefore, low-code represents the transition
from the traditional paradigm that the developer is solely responsible for their
solution to the notion that the platform must make the solution manageable
so that the developer can maintain productivity.

Furthermore, low-code platforms should be compatible with development
methodologies that are considerate of end-user expectations, such as Agile.
The platform must be easily portable and maintainable to the development
team in order to achieve its potential. A developer’s code must be easy to
build, test, and deploy, and it shouldn’t be difficult for the developer to manage
these operations. To fulfill the full potential of a development team, an appro-
priate Development and Operations (DevOps) stack must be used to support
Continuous Integration (CI) and Continuous Deployment (CD).

The DevOps Stack

The DevOps stack is a set of technologies that form a pipeline for a develop-
ment team. The general DevOps pipeline consists of several steps in a loop:
plan, develop, integrate, deploy, and monitor. This pipeline exists beside the
Agile framework to enforce the Agile principles of iteration and end-user feed-
back. Many different technologies fill the gaps in this pipeline to orchestrate
the interconnected web of software development.

Plan: An example stack would be using JIRA to plan a set of users stories for
the next project sprint.

Develop: Once the tickets are assigned, the designers would develop and
test in their project code base technology.

Integrate: When a set of user stories is finished they are registered into a Git
or SVN repository where the changes are integrated.

Deploy: At the end of a sprint, a set of automated tests will be applied against
the stories. Any defects should be triaged appropriately and then the code is
deployed up the stack to higher environments.

Low-Code and DevOps

4

Monitor: System administrators are alerted when a production issue occurs.
A system may require audits on user access or system performance. In the
case of Appian, a combination of built-in system logs and health reports helps
facilitate this phase of the pipeline.

Continuous Integration

Continuous Integration (CI) is the foundation for securing one developer’s
changes against the many versioning and configuration conflicts that may
occur between development and deployment.[2] It means that each change
to code or configuration can be monitored, reviewed, and reverted, if neces-
sary. In traditional programming this often means that each developer needs
to be an expert in the repository of their choice to manage their code. Often
a single mis-step from a developer can cause undesired merge conflicts and
throw the code base into disarray. A high-maintenance of the code base sim-
ply does not work well with the concept of low-code and Agile.

Appian leads the vision of how continuous integration works with a low-code
platform. The platform allows auditable versioning of each element that a de-
veloper works on, including business rules, user interfaces, APIs, and work-
flows. Furthermore, when concurrent development on shared resources is
performed, Appian informs the developer of potential versioning issues and
alerts them that another user is editing the resource. However, interconnec-
tions with repositories, software management, and automated build utilities
are required to address concurrent builds.

Continuous Integration in Action

Consider the scenario of two development teams working on the same code
base for a financial firm. One team may be performing an enhancement
stream while a completely separate team is developing bug fixes. In this sce-
nario, the bug-fix stream may be considered a critical path. Since the busi-
ness is a financial entity, it is of the utmost important to end-users that funds
are protected from incorrect transactions. In this case, the bug fixes should be
expedited, quickly tested, and deployed to all environments.

However, the enhance-
ment development stream
may be more thorough
and methodical. The us-
ers may be waiting for the
deployment of their new
work-stream into the plat-
form, but the business has
aligned training such that
the go-live is on an expect-
ed date a couple months
out.

5

The code repository, whether the technology is Git, SVN, Azure, or another
solution, is key to addressing these multiple streams. In the traditional model,
each developer would take out their own branch from the repository before
starting their work. Then, they would prepare their code changes and attempt
to merge them into a common branch, before the code is pushed to another
environment. Eventually this requires a pull request, to manually compare
the differences. This may result in days of work to do proper merges and test-
ing to produce a release candidate that considers the proper changes from
both streams.

Solving Continuous Integration for Low-Code

The low-code DevOps stack seeks to optimize this process. Any release
could introduce sweeping changes to interfaces and bug fixes that can be
critical to keeping the data secure. The modern development team must rise
above the difficulties of maintaining synchronous code bases and low-code
platforms offer several features to ease this process.

As previously mentioned, the Appian platform maintains versioning of internal
objects. Additionally, in the admin suite of the platform, the system adminis-
trators have a set of DevOps tools to ease the burden on developers. One
of these tools allows each connected Appian environment in the stack, gen-
erally Dev, Test, UAT and Production, to make direct comparisons between
application containers to identify the code discrepancies.

With a single button push the developer can view the line-by-line differenc-
es in each user interface configuration. This feature is inherent to the prod-
uct and doesn’t require an outside repository to function making it a great
foundation for starting the DevOps process. Applied to our example above,
the development team could utilize an additional Appian environment as a
pre-production merging area for code. The team can quickly build and test a
release candidate exactly as it will be released to production with the addi-
tional confidence that they have seen the user interfaces working already.

However, the built-in tools of a low-code platform may not consider all the in-
terconnections and database configurations that exist outside of the domain
of the platform. To further refine the DevOps stack it becomes necessary to
integrate external repository systems such as Git or SVN to help integrate
and build the project as a whole. It is recommended that the team use sepa-
rate branches for Test, UAT, and Production builds of the code. By organizing
the code base into separate branches for each environment we are able to
construct a pipeline where each branch represents a more refined applica-
tion version. Automated testing tools such as Selenium can provide quick
verification on UAT and production branches to ensure that regression issues
are not present in the release candidate.

6

Appian Versioning Tool

The Appian platform offers a free community tool called the Automated De-
ployment Plug-in to facilitate integrations with external repositories. The Ap-
pian Versioning Tool allows any developer to easily merge their code into a
code repository. The team may use multiple branch management strategies
such as story-specific branches or sprint-specific branches.

In the case of a story-specific branch, each team member will be responsi-
ble for checking out a new branch for each story they do in a sprint. Then at
the end of the sprint, all of the story branches will be merged into the UAT
branch. If the team opts to use a sprint branch model then each developer will
deploy their changes to the sprint branch directly. In this case, the versioning
tool will only need to run on the newest changes that have been applied to
the environment. The start and end-hash parameters of the script allow the
developers to define this window appropriately.

Automated Testing

A critical feature of the build phase is verifying the correctness of your appli-
cation. Although automated tests should not be considered as a replacement
for functional testing resources, each project should maintain a suite of au-
tomated tests that are managed by the development team. Selenium-based
solutions such as Cucumber and FitNesse have helped ease the process of
developing these scripts for developers by making easy-to-understand com-
mands that pair well with low-code platforms.

Sometimes a project may be significantly progressed when the need for more
mature DevOps practices becomes a priority. When building automated tests
in a significantly mature project, a team may struggle to decide which fea-
tures should be considered in their testing suite. In this case the team should
focus on high-level features instead of edge cases. By focusing on high-lev-
el features, the team gets immediate value when the test can easily prove
whether or not a build has critically failed. During future iterations, the team
will be able to consider stories on a sprint-by-sprint basis and register them
in their own repository.

The automated testing suite should act as a barrier to the UAT and Produc-
tion branches of the repository. The release management software should
automate the build by testing the release before it continues to the deploy-
ment phase. In the case of a failure, the team will realize that a regression
is apparent in their build and they will need to fix the issue before any pull
requests are merged from their sprint branch.

Continuous Delivery / Development

Continuous Delivery/Deployment (CD) represents the deploy step in the
DevOps stack, after the application has been built. Frequent deliveries must
be made to end-users so that the value of the changes can be fully realized.

7

[2] The main difference between continuous delivery and deployment is that
continuous delivery features a manual deployment of the code whereas con-
tinuous deployment is fully automated. It is recommended that a team begin-
ning their DevOps pipeline should begin with a continuous delivery model
first to enhance confidence and refine procedures before they are ready to
automate the entire process. Jenkins and Bamboo are examples of release
management platforms that ensure software builds are deployed on a fre-
quent schedule. Generally, the build phase will provide a set of artifacts that
can be used by the release management suite such as application objects,
test results and environment configurations. This software can be optimized
to perform automated deployments as soon as a package passes the au-
tomated test, or on a timed schedule so that maintenance periods can be
communicated ahead of time to end-users.

Appian Automated Deployments

Appian provides another resource that is packaged alongside the Version-
ing Tool, the Appian Deployment Manager. This tool is composed of two el-
ements: the deployment script and the automated deployment servlet. The
script is responsible for taking the build artifact from the integration phase and
deploying it to the servlet. The team should be careful to protect their creden-
tials since the script will need to deploy as an administrator account. It is rec-
ommended that the deployment mechanism use encrypted credentials, such
as, what is available in the Jenkins platform, to manage their accessibility.

Monitoring

Monitoring represents the final step in one iteration of the DevOps stack. Now
that the changes have been integrated, built and deployed to production, the
team must have a way to measure the impact of their changes. This impact
may be on the general user-experience, or it may also affect overall system
performance and health. Appian provides out-of-the-box options for moni-
toring applications such as built-in alert notifications and the Appian Health
Check.

Service Management

Users may experience critical errors or impacts to their daily routine based on
the changes in a release. Appian utilizes an alert system that can automati-
cally direct emails to system administrators that include details about an error.
Workflows can be viewed on a step-by-step basis to identify exactly why an
issue occurred. Additionally log files are provided to system administrators so
that they can properly audit user authorization and logins to the environment.

It is important to realize these issues and communicate them back to the de-
velopment team for prioritization. Ticket management software such as Ser-
viceNow or JIRA can be updated with information about issues in the system.
These issues should be presented and triaged in the next planning phase of
the DevOps cycle.

8

Appian Health Check

The Appian Health Check is a free utility available in the Appian Admin con-
sole that provides push-button access to reports on system performance and
utilization. The tool makes it easy to recognize technical debt for the develop-
ment team by automatically highlighting areas that contradict best practices
and informing the administrators about performance concerns. The Health
Check is configurable to run on a scheduled basis and can also be set to au-
tomatically send the results to system administrator email addresses. It is rec-
ommended that technical leads review the Health Check from the production
application on a weekly basis. Any “High” or “Medium” priority issues should
be either resolved and tracked as part of technical debt or documented if
there are special conditions around them.

Conclusion

The DevOps pipeline has revolutionized how low-code platforms can auto-
mate otherwise rigorous tasks and allow for streamlined, consistent deliv-
ery. Continuous integration provides the means to integrate multiple change
sources together quickly, and thoroughly produce a high-confidence release
candidate. Continuous deployment ensures that this product is delivered to
the end-users quickly to improve their productivity. Monitoring tools allow the
developers insight into the effects of their changes and allow for highly impact-
ful planning sessions. An effective DevOps pipeline increases the productivity
of the modern development team and enables quick, consistent delivery that
allows developers to focus first and foremost on quality.

About the Author

Derek Shue is an Appian Level-3 Certified, Appian Enterprise Architect at
Macedon Technologies. He has delivered significant modernization solutions
for healthcare, bio-pharmaceutical and financial organizations. Derek was
one of the first Level-3 certified developers in the Appian A-Score program
and has focused on enhancing and standardizing DevOps best practices for
Macedon Technologies.

Macedon is a recognized leader
in intelligent automation and cloud
data solutions. We have deep
expertise with industry-leading
technologies that we leverage to
solve our clients’ unique challenges.

Our hybrid roles achieve better
solutions faster than traditional
development teams.

Contact: (571) 526-4281
info@macedontechnologies.com

[1] Ross, Malcom. “Webinar: Low-Code and DevOps.” Appian, 2019
http://www.appian.com/resources/webinar-low-code-devops/

[2] Pittet, Sten. “Continuous Integration vs. Continuous Delivery vs. Continu-
ous Deployment.” Atlassian
http://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

