
1

A Macedon Labs Exploration

Mulesoft + Appian

White Paper

 By Brandon Sultana

2

Introduction

ESBs

What is an ESB?

ESB Features & Benefits

MuleSoft

Anypoint CloudHub

Appian + Mulesoft

Premise

Proof of Concept

Limitations

Best Practices

Case Study: West-Coast Bank

Conclusion

Table of Contents
3

3

3

4

5

8

8

8

9

10

11

11

13

3

Macedon Technologies improves the way companies conduct business by le-
veraging innovative technologies that streamline processes. Appian has been
a core part of that business model as a means to create frontend systems
backed by Appian-hosted databases and processes. As part of our research
into additional technologies, Macedon has found Mulesoft to be a powerful
partner to augment our Appian digital transformation solutions.

The Enterprise Service Bus (ESB) is a rapidly-growing architecture design
pattern that promotes high scalability through independent applications
known as microservices. These applications are frequently linked together
through an Application Programming Interface (API) in the ESB, which acts
as a centralized hub for the entire system.

MuleSoft is an ESB owned by Salesforce that promises ease of development
and reduced costs compared to other ESB systems. This is made possible
by a platform that promotes reusable connectors to popular microservices,
saving developers time in building out integrations. This streamlined build pro-
cess, along with other time and cost-saving practices such as robust error
handling and data scaling, make MuleSoft an essential platform for building
applications that can scale with ease.

In this white paper, we will dive into what an ESB is and what it accomplishes,
the tools MuleSoft brings to the table compared to other ESBs, how we com-
bine our existing Appian knowledge with MuleSoft and dive into a case study
with a previous client to demonstrate how Appian and MuleSoft together can
provide real value to new and existing clients of Macedon.

What is an ESB?

An Enterprise Service Bus (ESB) is an application that is designed to link
systems together using a set of rules defined by a development team. In the
age of microservices, ESBs can play a critical role in delivering data from one
application to another. ESBs provide a centralized hub for various different
platforms to communicate with each other. This concept allows individual ap-
plications to be more independent while the ESB handles the heavy lifting of
routing connections between those applications.

ESBs are most useful at high scale with many different interconnected ser-
vices. For a system with two applications that communicate with each other, it
makes sense to have these connections to be direct. However, if we expand
this model out to a whole host of applications, each with its own list of appli-
cations that they communicate with, writing the connections needed for all of
these applications to function gets significantly more complicated. Each appli-
cation needs dedicated logic to handle each connection that it maintains. With
an ESB, unified calls to each system are written, so it becomes substantially
easier to add new applications to a system. If we add a new application to a

Introduction

ESBs

4

system with an ESB that requires data from 4 different applications, we no
longer need to update those 4 applications to talk to the new application. In-
stead, we simply configure the new application to talk to the ESB and get the
data provided by those applications through that connection with the ESB.

ESB Features and Benefits

ESBs can potentially receive high amounts of throughput for high-value sys-
tems, so it is important for the ESB to be scalable and have systems in place
to manage and queue incoming traffic so that nothing is missed. Many mod-
ern ESBs, such as MuleSoft, are built to scale up or down depending on the
load the system is currently experiencing. This, in the long run, can save on
resources as the company doesn’t need to pay for architecture built to handle
worst-case traffic loads at all times.[1]

5

MuleSoft is a software company headquartered in San Francisco, California,
and founded by Ross Mason in 2006. Their namesake product is a highly
respected ESB platform used by companies such as eBay, Coca-Cola, An-
heuser-Busch, Netflix, and Target. MuleSoft operates off of connectors de-
signed to connect to MuleSoft development is a simple process to pick up
but offers endless depth and possibilities for those looking for more nuanced
features.

MuleSoft ESBs are built upon a multi-layered API approach, with each layer
becoming more and more abstract. This approach allows developers to first
create APIs specifically for each frontend application that needs to use the
ESB in the Experience layer, then create an additional layer of APIs to trans-
form data in the Process Layer, and finally have a bottom layer to communi-
cate with backend systems called the System layer.

Modules are not limited to what is built and supplied by MuleSoft. Through
Java, users can write and develop their own modules complete with any num-
ber of objects. These modules can be used to package custom functionality
or even connect to services that MuleSoft doesn’t support. These modules
can then be uploaded to the AnyPoint Exchange site, where they can be ac-
cessed either by other users within the user’s organization or throughout the
broader MuleSoft community. Features like this expedite the addition of fea-
tures by allowing users to easily create new functionality to a system without
significant development overhead.

MuleSoft

The centralized nature of ESBs also feeds into easier error handling and
tracking. With a unified error handling system in the ESB, applications can
receive standardized error codes that can be planned around, rather than
having each application build out complex error handling structures. MuleSoft
features a robust suite of error handling options that can have flows return
custom error codes and messages depending on the results of the flow or the
internal error that has been thrown

Crucially, a mature ESB practice can greatly reduce the development cost
of adding new applications and features to an existing system. With each
application operating with greater independence, more time can be focused
on fleshing out the features and efficiency of the application while the ESB
handles and standardizes many of the connectivity and error-handling proto-
cols necessary for the system to function. Additionally, the independence of
each application reduced the risks incurred when migrating or upgrading an
application to a new technology. Replacing a system that operates fairly inde-
pendently requires significantly fewer resources than one that is entrenched
with many other applications and requires less overhead and coordination
with other teams.[2]

6

MuleSoft development is done in Anypoint Studio, an extension of Eclipse
that allows for the creation of API flows using drag-and-drop nodes called
operations. A flow can be entered either by an HTTP Listener at the start of
the flow, which looks for incoming connections on the specified endpoint, or
by another flow calling that sub-flow. Each flow contains a set of operations
that are executed in sequence until the final operation is executed when the
payload is then sent back to the original caller of the flow.

Operations are designed to fulfill a specific action. These operations are
grouped together into a module to fulfill similar tasks. MuleSoft comes with
several pre-installed modules, such as a Database Connector module with
operations for selecting, inserting, or deleting data from a database. MuleSoft
provides many different connectors to popular microservices such as AWS,
Kafka, Salesforce, and many more for users to download off of the Anypoint
Exchange site. Additionally, organizations can develop and publish their own
modules to this site to be made available either to the whole organization or
everyone on Exchange, granting limitless development possibilities.

7

Example of an API flow. Contains an HTTP listener as an entry point and then a
series of nodes executed in sequence that perform actions such as setting local vari-
ables, transforming data, or connecting to other systems to create or read data

As an alternative to creating each API flow individually, Anypoint Studio can
connect to Anypoint Platform’s API builder, which is accessible through the
AnyPoint Website. This interface allows developers to create API specifi-
cations using a RESTful API Modeling Language (RAML) file, defining the
routes, methods, query parameters, and responses associated with an API.
Object type files can also be added, detailing the kinds of JSON objects that
are expected to be consumed or sent out by a given anypoint. Anypoint Studio
can then digest these RAML files and automatically build out flows for each of
the API endpoints to accelerate development.

The API Specification that is created in Anypoint Studio will include a generic
HTTP listener that listens for all requests. Then a flow for each API endpoint
is generated, using example inputs and outputs that are laid out in the spec-
ification. Each of these flows will be routed to by the main listener depending
on the request method and URL that is received. Developers can then go in
and add additional nodes to each flow to further transform data, connect to
additional servers, call subprocesses/APIs, or many other actions.

Once an API specification has been created, documentation for the individual
endpoints and methods can be defined by developers to be viewed on the
AnyPoint Exchange platform. This online platform even supports test calls to
the API directly from the browser, giving users tangible examples of how the
flows work. These calls support a variety of HTTP methods and can include
query parameters, headers, and custom HTTP request bodies.

AnyPoint development involves dragging, dropping, and configuring opera-
tions into a chain to generate a flow. This design process is simple to pick
up and doesn’t require in-depth coding knowledge to get started. For more
experienced developers, however, custom functionality can be created using
a Java Connector to write new features in Java. MuleSoft provides a variety of
tools to fit a variety of development styles and experience levels.

8

Anypoint CloudHub

A MuleSoft ESB can be self-hosted, either on-premise or through a cloud
service managed by an enterprise such as Amazon EC2. However, MuleSoft
strongly promotes its own CloudHub platform for hosting, which provides ad-
ditional useful functionality for managing a MuleSoft ESB.

MuleSoft implements scaling through horizontal and vertical means. An ESB
is hosted across a series of workers, with each worker having a number of
virtual cores (vCores) that represent the processing power of the worker. The
architecture can be scaled vertically to increase the number of vCores for
each worker or horizontally to increase the total number of workers. Scaling
up vertically is useful if the amount of requests coming into the system is
very high, as more workers can handle the requests. Scaling up horizontally
is useful if the actions taken by the workers require high processing power.
CloudHub supports granular auto-scaling rules to be configured for the in-
stance that will automatically scale the system up or down horizontally or
vertically if conditions defined by the user are met. A previous problem with
older ESBs is their rigidity had the potential to lead to bottleneck issues. The
safeguards and features provided by MuleSoft, mean the system can scale
up or down to ensure integrations are reliably meeting SLAs.[3]

Anypoint also contains robust authentication options. Client Ids provided to
customers for authentication to the MuleSoft APIs can be grouped into cus-
tom policies, which can have granular rules attached to them. For example,
users in a policy titled “Silver” may only be able to access the API once a
minute, while a “Gold” policy may allow users to connect 10 times a minute.

APIs that are hosted on the Anypoint Exchange platform can contain custom
documentation, as well as testing directly within the page, allowing users to
quickly understand the purpose of an endpoint and the standard inputs and
outputs. On the page for an API, a user can view each endpoint for the API
and the associated methods for that API. Then, clicking on that method dis-
plays further information, such as the headers and query parameters that can
be input into the method, as well as a sample output of the data.

Appian + MuleSoft

Premise

At Macedon Technologies, we’re the world leaders in Appian development,
with over a decade of experience under our belts in engagements to build
effective frontend applications to meet various business requirements. This is
typically facilitated through a “one-stop shop” approach, where Appian man-
ages a frontend, business processes, and its own hosted database. Busi-
nesses using Appian can choose to leverage these services or use their own
managed solutions. While the monolith approach is a great model for stand-
alone applications, we determined that in a system with an expansive tech
stack using many different technologies, an alternative approach could be
more effective.

9

Proof of Concept

We developed a proof of concept to demonstrate this design pattern. The ap-
plication is a simple Customer record where customers can have a number of
documents associated with them. The goal of this system was to decouple the
database and document storage from Appian so that other applications could
potentially leverage those services via a shared MuleSoft ESB. The system
contained the following elements:

• An Appian frontend to display Customer data
• A MuleSoft ESB with generic APIs for Appian and other potential ser-

vices to hit
• A database hosted outside of Appian to hold information about Custom-

er and their documents
• An Amazon S3 Bucket for file storage, such as Customer profile pictures

and documents

When displaying a Customer’s profile, the flow is:

1. Appian calls an Integration rule designed to hit that MuleSoft Endpoint
2. The Integration makes a GET request to the MuleSoft ESB on the /cus-

tomer/{ID} endpoint
3. The MuleSoft ESB receives the request and routes the call to the flow for

that endpoint
4. The flow is called and performs the following actions

• Makes a SELECT statement on the databases to retrieve information
for that customer

• Makes a call to Amazon S3 to retrieve signed URLs for the docu-
ments in the bucket associated with that customer

• Formats all this data into a JSON format to be consumed by Appian
• Sends the data back to the original requester

5. Appian receives the payload, parses the response body into a Record
that can be read by Appian, and displays the data in the frontend appli-
cation. Any image urls included in the body of the response are uploaded
into Appian Documents via a process

In many business models, there are multiple different applications that need
to share data with Appian. While Appian can technically serve this data to oth-
er applications using APIs, this adds unnecessary complexity to supporting
APIs, as there needs to be additional communication with the teams devel-
oping Appian features. As the stack becomes larger, it makes more sense to
have the APIs that control these interactions exist on a dedicated platform.
In scenarios where multiple applications need data, an ESB is very valuable
to read, write, and update data. API endpoints written in MuleSoft serve vari-
ous requests from different front-end applications. These endpoints then have
a number of actions associated with the flow, perform the necessary data
transformations and relay that data back to the original requester.

10

When updating or deleting a customer, a similar flow is followed. Appian will
make an integration call to exposed endpoints on MuleSoft to trigger dedicat-
ed flows for these actions. MuleSoft will perform checks using SELECT state-
ments to ensure that the data that is trying to be updated/deleted exists, and
if it does, similar nodes to connect to the database and S3 bucket are used.
MuleSoft will then generate a success message to send back to the client.

On top of these flows that interact with the database, customer images, and
customer documents, simpler versions that only interact with one of these ser-
vices also exist, for if a client is created without any documents or just deleting
one document associated with a customer.

This very successful proof of concept demonstrates how Appian can become
more flexible using MuleSoft. In scenarios where a customer has existing doc-
ument storage, databases, and other possible backend applications, Appian
can become an effective standalone frontend that can be plugged into Mule-
Soft with relative ease.

Limitations

Appian has a limit to the size of payloads that can be received, which places
some restrictions on how to handle incoming documents and images. In the
proof of concept, we got around this by supplying signed Amazon S3 URLs
to Appian for the system to then interpret. However, a new issue then arises
from this. Most document functionality within Appian can only be performed
on Appian Document objects that have been created within Appian, not on
URLs. Therefore steps need to be taken to load the documents from the URL
into Appian before they can be displayed or downloaded by users. This adds
some additional overhead and results in document duplication, as they are
now being stored within both Amazon and Appian.

Since one of the goals of this approach is to limit the amount of data stored
within Appian, an automatic process that removes unused documents on a
set schedule would be recommended to keep things clean. It is important to
hold that while documents are stored in Appian, the Amazon S3 document
storage should be seen as the main source of truth since other applications
may also be downloading and using these documents.

11

Best Practices

When writing out the specifications for the API, it is highly recommended that
the files are written using OAS 2.0 or 3.0 (also previously referred to as Swag-
ger). This API format is very useful in a Mule+Appian project as both systems
natively support this format. This means that once the API specification is
written up, it can be imported into MuleSoft to generate all the flows in the
middleware and then imported into Appian to generate a Connected System
object that has all the flows built in.

When creating a new integration using this Connected System, all of the end-
points/methods will be listed in a drop-down for easy access, and some im-
portant fields will be pre-populated once the Integration is created. Using this
approach will ensure the systems are kept in sync and will reduce the overall
development time of flows across both systems.

Appian has a feature to back its records through a web service API. Data
syncing will load in data from the database through user-defined sync expres-
sions, housing the data within Appian to make transactions quicker. This fea-
ture is particularly useful for large databases that can be expensive to query
multiple times through GET requests. Any value that is updated within Appian
will automatically be updated in the original database. However, data that is
changed by other applications that access the data will not automatically be
reflected within Appian, so it is important to include systems to inform Appian
of a change to sync its data when needed.

We performed this by creating a Web API on Appian that listens for incoming
connections and upon being reached, will perform a sync on a list of data-
base ids in the body of the request. This Web API is hit by Mulesoft, with an
HTTP Request node in any POST or DELETE flow that makes changes to
the database. It is important to create an efficient syncing and querying model
across MuleSoft and Appian that only updates the ids that are necessary, as
an Appian timeout can result in unsynced data.

Case Study: Leading West-Coast Bank

In this section, we will discuss a client that Macedon has worked with who
used an ESB, how the ESB was helpful, how they could have further improved
their use of the ESB, and how Macedon hopes to use this knowledge in their
own upcoming MuleSoft work. The primary benefit of using an ESB is that it
centralizes many of a business’s operations. This theory can be applied not
only to the flows and applications being leveraged but also to the teams in-
volved in building out those connections. An ESB, by design, links together
many different applications and, therefore many different teams that control
those applications. Complex flows without an ESB can be very difficult to co-
ordinate due to the number of stakeholders involved.

The financial institution in question had an ESB and a team to support that
ESB, however, we felt that the setup used didn’t lean far enough into the
strengths that an ESB provides. One of the major benefits of using a central-

12

ized service layer is a reduction in the amount of custom work that needs to
be done within the outer layer systems. While some services like database
connectivity were moved to the ESB, others, such as accessing queues and
certain file transfer protocols, were not, resulting in a messy structure where
some custom work needed to be done both in Appian and presumably other
frontend and backend systems that connect with the ESB. Centralizing this
work into the ESB would have greatly reduced the amount of custom work
needed in the outer layer applications.

MuleSoft has a massive catalog of modules, connectors, and APIs that other
developers can leverage. Because of the fact that not all services at this in-
stitution were not centralized into the ESB, there were some applications that
needed to be connected to by services like Appian, such as accessing a file-
store and a message queue. Because of this, custom work needed to be done
in Appian to create plugins to access these services. This resulted in many
hours sunk into a custom service that only served to connect one system to
another. MuleSoft has a deep well of plugins for many major technologies
that can easily be dropped into a project, which could have made this feature
far easier to implement. Additionally, even if the module didn’t exist for one of
the services, the development time put in to create a new module in MuleSoft
would be better spent, as this module would serve to connect any service
that integrates with MuleSoft to then talk to the technology in question. Mule’s
position as an integration layer, combined with the depth of available plugins,
makes it a perfect candidate for this scenario.

While this financial institution did have an ESB of its own, it is important to
note that just having an ESB is not enough to make communication smoother.
Because of the state of this project, any new features needed the consultation
of approval of many different stakeholders who controlled various different
applications or pieces of data. The goal of an ESB is not just to centralize
the routing of data but also to centralize and reduce the need to get so many
individuals involved in changes. MuleSoft strongly encourages separating out
its API structure into multiple layers. While the ESB is one interconnected web
of systems with countless different applications and stakeholders, the flows
within ESBs should also be designed in a way to be independent of each oth-
er and simple to allow for continuous development of the platform without the
need to get so many people involved, which hinders development.

MuleSoft’s dynamic scaling options would have proven very useful, as there
was an issue with this client where spikes of high data usage were resulting
in requests to the API being lost periodically. Because of this, a system where
requests were automatically retried on failure had to be implemented across
several applications. Mule’s ability to scale up either vertically or horizontally
when the demand requires it would have allowed developers to focus resourc-
es on other development, giving peace of mind that the system could handle
any load that was required of it.

Another benefit to using an ESB, as observed by our team members, is that
an ESB creates a single point of entry/exit for the institution’s external flows.
Clients like this one have incredibly high security expectations, which means

13

adding additional external endpoints could require significant lead time, which
can cause blockers. Having the ESB be the single, trusted point of external
communication makes adding new connections easier and safer.

MuleSoft provides a new dimension to Macedon’s Appian offerings, allowing
Appian to integrate easily with countless different services that a customer
may use. Using an ESB as a single point in a system with many interlock-
ing endpoints can improve the efficiency of development and communication
across teams.

For systems that include a varied tech stack, an ESB that allows each ap-
plication to operate independently makes practical sense. This setup makes
adding new services seamlessly, improves the scalability of the entire system,
and allows for easier upgrades/replacements of existing services, all while re-
ducing the overhead of coordinating between various teams for adding func-
tionality. MuleSoft’s wide pool of existing connectors to other services, with
the addition of the ability to create and download custom connectors from the
greater MuleSoft community, further enforces MuleSoft’s emphasis on reuse
and streamlined development.

MuleSoft being paired with Appian allows developers to leverage Appian’s
core frontend design functionality while also delivering a more flexible back-
end and database structure that gives greater opportunities for other appli-
cations to leverage that data. Developers with previous Appian experience
should be able to pick up MuleSoft with relative ease, as many of Appian’s
core drag-and-drop principles from process development are also applicable
to MuleSoft’s API flow design.

Macedon Technologies will continue to use its existing Appian expertise and
growing MuleSoft knowledge base to create new possibilities in the ESB space
and develop further best practices for combining the technologies. Macedon
fully believes in the potential presented by ESBs, and we believe that Mule-
Soft best suits our goals to create first-class software solutions that meet the
needs and goals of clients of all kinds.

Conclusion

14

About Macedon

Brandon Sultana is a New York-based Senior Consultant at Macedon Tech-
nologies. He initially focused on Appian development for internal tools but has
since focused on researching new technologies as part of the Macedon Labs
team. He has led many of the discoveries in MuleSoft and has since become
a MuleSoft Certified Developer.

[1] Autoscaling in CloudHub:
https://docs.mulesoft.com/cloudhub-1/autoscaling-in-cloudhub

[2] Modern ESBs: Pros and Cons
https://arc.cdata.com/blog/20200114-modern-esb

[3] Rate Limiting: SLA-based policy
https://docs.mulesoft.com/policies/policies-included-rate-limiting-sla

About the Author

Macedon is a recognized leader in intelligent automation and cloud data solutions.
We have deep expertise with industry-leading technologies that we leverage to
solve our clients’ unique challenges. Our hybrid roles achieve better solutions faster
than traditional development teams.

Contact: (571) 526-4281
info@macedontechnologies.com

